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EARTHQUAKE GROUND MOTION ASSESSMENT
In-Delta Water Storage Risk Assessment

Delta Wetland, California

INTRODUCTION

This technical memorandum presents the results of a study conducted by URS to assess
potential future earthquake ground motions at the In-Delta water storage facility located
near San Francisco Bay region, California. The water storage facility will be constructed
by converting two existing islands (Bacon Island and Webb Track) into water storage
islands. Perimeter embankments will be built to impound the reservoir water. This study
was conducted to address comments on developing site-specific ground motions for the
reservoir islands and to allow a more complete seismic hazard characterization at the
reservoir islands.

OBJECTIVE

The approach taken for this study was to conduct a probabilistic ground-motion analysis
to assess the probabilities of exceeding various ground motion intensities at the proposed
facility. Specifically, the available geologic and seismologic data, including evaluations
previously performed for nearby locations by the Bureau of Reclamation (LaForge et al.
(2002) for the Martinez and Contra Loma Dams, Ake, et al. (1999) for the Tracy Fish
Test Facility) and Calfed (1998) for the Delta Wetland, were reviewed to evaluate and
characterize potential seismic sources and the likelihood of earthquakes of various
magnitudes occurring on those sources.

The following sections present the methodology used for the probabilistic seismic hazard
analysis, the seismic source characterization, the attenuation relationships used, and the
results of analysis.

PROBABILISTIC GROUND-MOTION ANALYSIS

Methodology
The probabilistic analysis is based on the methodology proposed by Cornell (1968) and
includes some of the most recent developments in the model. Assuming that earthquake
occurrences are Poisson processes, the probability that a ground motion parameter ‘Z’
(peak and response spectral accelerations) at the site exceeds a specific value ‘z’, in a
time period ‘t’, is given by:
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where ��(z) is the annual mean number of seismic events in which the ground motion
parameter ‘Z’ at the site exceeds the value ‘z’ (i.e., annual frequency of exceedance).
��(z) can be calculated as follows:
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where:
�m0 = annual mean number of seismic events with magnitudes greater than m0 ,
f (mi) = probability density function for seismic events of magnitude mi ,
p(R=rj \ mi) = probability that given the occurrence of an earthquake of magnitude

mi, the source-to-site distance is rj ,
p(Z > z \ mi, rj) = probability that given the occurrence of an earthquake of

magnitude mi at the source-to-site distance of rj, the ground motion
parameter ‘Z’ at the site exceeds a specific value of z.

The total annual frequency of exceedance for ground motion parameter ‘Z’ at the site
(i.e., total hazard) is then obtained by summing the hazards from all seismic sources:
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where N is the number of seismic sources considered in the study.

The uncertainties associated with seismic source parameters (geometry, location and
recurrence parameters) were incorporated in the analysis using the logic tree approach, as
shown in Figure 2.

Seismic Source Characterization

Two types of earthquake sources are characterized and used in the analysis. They are: 1)
fault sources and areal (random) source zones. Fault sources are modeled as three-
dimensional fault surfaces and details of their behavior are incorporated into the source
characterization. Areal source zones are regions where earthquakes are assumed to occur
randomly within the souce boundaries. The detailed discussion of the seismic source
characterization is presented in Appendix A. Figure 1 shows the approximate locations of
the seismic sources.

Seismic sources are modeled in the hazard analysis in terms of geometry and earthquake
recurrence. For fault sources, three recurrence models were used: Characteristic,
truncated exponential and maximum magnitude models. They were assigned the
following weights: 0.3 for characteristic model, 0.1 for truncated exponential model, and
0.6 for maximum magnitude model. For areal source zones, only the truncated
exponential recurrence model was used in the analysis. Figures 3 and 4 present the
recurrence rates, as a function of magnitude, calculated for the seismic sources.

Attenuation Relationships

Earthquake ground motion attenuation relationships used in this study are those
developed for deep stiff soil sites by Abrahamson and Silva (1997), Sadigh, et al. (1997),



Boore et al. (1997) and Campbell (1997). These relationships were developed on the
basis of statistical analyses of ground motions recorded during past earthquakes having
similar tectonic environment with that of western United States. These empirical
attenuation relationships were weighted equally.

For Boore et al. (1997) relationships, a shear-wave velocity of 300 m/sec was used. This
shear-wave velocity value was selected based on the results of a field measurement
conducted at the nearby location (Boulanger et al.,1997).

Hazard Results

The hazards were computed for a point located approximately in the middle of the Bacon
Island. Computed seismic hazard curves that relate the amplitudes of peak ground
acceleration and spectral accelerations to the annual frequencies of exceedance of those
amplitudes are shown in Figure 5 and 6, for peak ground acceleration and 1-0-sec
spectral acceleration, respectively. Also plotted on these figures are the contribution
curves from the various seismic sources considered in this study. As can be seen from
these figures, the hazard at the project site is dominated by the nearby Mt. Diablo Thrust,
and to a lesser degree, the Coast Range random zone. The San Andreas, Hayward and
Calaveras fualts also contribute to the long-period motions, as shown in Figure 4 for the
1-0 sec. Spectral acceleration.

The 5% damped equal-hazard response spectra for the 43-, 100-, 200-, 475-, 1,000-, and
2,500- year return periods were developed using these computed hazard curves, and they
are shown in Figures 7. The spectral values at selected periods are listed in Table 1.

Table 1.  Calculated Acceleration Spectral Values at Selected Periods
5% Acceleration Response Spectral Value, g

Period, sec
43-year

return period
100-year

return period
200-year

return period
475-year

return period
PGA 0.14 0.20 0.26 0.33
0.075 0.21 0.30 0.39 0.51
0.10 0.25 0.35 0.46 0.62
0.20 0.32 0.46 0.59 0.80
0.30 0.32 0.46 0.59 0.80
0.50 0.27 0.38 0.49 0.68
1.0 0.16 0.24 0.31 0.42
2.0 0.09 0.13 0.17 0.24

COMPARISON WITH PREVIOUS STUDY

The results of the current study were compared with those calculated by Calfed (1998) in
Table 2 below. It can be seen that the PGAs calculated using current model are about
15% to 35% higher than those calculated by Calfed (1998).



Table 2.  Comparison with Results of Calfed (1998) Study
Spectral Acceleration in g

43-yr return period 100-yr return period 200-yr return period 475-yr return period
Period Current

study
Calfed
study

Curren
t study

Calfed
study

Current
study

Calfed
study

Current
study

Calfed
study

PGA 0.14 0.114 0.20 0.175 0.26 0.19 0.33 0.25
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Figure
3

Earthquake Recurrence Relationships
Calculated for Seismic Sources

 (group #1)
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Figure
4

Earthquake Recurrence Relationships
Calculated for Seismic Sources

 (group #2)
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7

Equal-hazard Acceleration
Response Spectra
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